Matematica con elementi di Probabilità e Statistica

Lezione 1

19/10/2023

3h

Patto formativo con gli studenti. L’insieme dei reali come ampliamento a partire da N. Assiomi di Peano. Intervalli.

Disequazioni di I e II grado; sistemi di disequazioni; disequazioni fratte

pdf Lezione 1 (pdf) - 3.05 MB
Lezione 2

20/10/2023

6h

Equazioni e disequazioni di grado superiore al secondo. Equazioni e disequazioni irrazionali
Lezione 3

31/10/2023

9h

Equazioni e disequazioni esponenziali; equazioni e disequazioni logaritmiche pdf Lezione del 31/10/2023 (pdf) - 4.65 MB
Lezione 4

06/11/2023

12h

Verso il concetto di funzione; funzioni iniettive, suriettive, biettive; funzione inversa; funzioni crescenti e decrescenti pdf Lezione 4 (pdf) - 3.86 MB
Lezione 5

07/11/2023

15h

Funzioni reali di una variabile reale: funzioni algebriche e funzioni trascendenti; estremi di una funzione; funzioni composte; calcolo dell’insieme di definizione di una funzione
Lezione 6

09/11/2023

18h

Funzioni logaritmo ed esponenziale. Grafici traslati e grafici simmetrici. pdf Lezione 6 (pdf) - 2.53 MB
Lezione 7

14/11/2023

21h

Introduzione al concetto di limite; nozioni di topologia della retta: intorno; punto di accumulazione; Teorema di Bolzano – Weiestrass (con dim); sottoinsiemi compatti della retta numerica (con dim). Nozione di limite finito in un punto; limite infinito; verifica dei limiti; significato geometrico pdf Lezione 7 (pdf) - 3.95 MB
Lezione 8

16/11/2023

24h

Algebra dei limiti; forme indeterminate; Teorema di unicità del limite (con dim); teorema sulla esistenza del limite di una funzione monotona; nozione di continuità in un punto; teorema di Bolzano sulla continuità di una funzione monotona (con dim); esempi e controesempi di funzioni continue pdf Lezione 8 (pdf) - 3.54 MB
Lezione 9

17/11/2023

27h

Teorema degli zeri (con dim), esempi e controesempi; teorema di permanenza del segno (con dim); controesempio di non validità; teorema inverso; teorema di regolarità per confronto (con dim); teorema di Weiestrass; controesempi di non validità. Applicazioni dei limiti allo studio delle funzioni; calcolo degli asintoti. pdf Lezione 9 (pdf) - 3.98 MB
Lezione 10

21/11/2023

30h

I teorema dei valori intermedi (con dim.); II teorema dei valori intermedi (con dim.). Limiti notevoli Dimostrazione del limite sinx/x. Punti di discontinuità.
Lezione 11

23/11/2023

33h

Criterio di invertibilità (con dim.), ordine di un infinito, altre forme indeterminate, pdf Lezione 11 (pdf) - 2.35 MB
Lezione 12

24/11/2023

36h

Esercitazione: calcolo dei limiti
Lezione 13

28/11/2023

39

Correzione esercizi, Introduzione al calcolo differenziale, notizie storiche, problema della retta tangente, concetto di derivata della funzione in un punto, equazione della retta tangente, legame tra continuità e derivabilità (con dim.), esempi e controesempi; derivata sinistra e derivata destra; punti di non derivabilità; derivate fondamentali (verifica per una funzione costante, per la funzione y=x, per la funzione esponenziale); operazioni con le derivate, derivata di una funzione composta.
Lezione 14

30/11/2023

42

Teoremi del calcoo differenziale: teoream di Rolle (con di.), teorema di Lagrange (con dim.), teorema di Cauchy (con dim.), teorema di Fermat (con dim.) pdf Lezione 14 (pdf) - 3.16 MB
Lezione 15

01/12/2023

45

Funzioni crescenti e decrescenti, condizione necessaria per la monotonia, condizione sufficiente per la monotonia, condizione necessaria per l’esistenza di un minimo o di un massimo relativo, condizione sufficiente per l’esistenza di un massimo o di un minimo relativo, criterio di monotonia pdf Lezione 15 (pdf) - 2.85 MB
Lezione 16

05/12/2023

48

Esercitazione: calcolo delle derivate e applicazioni allo studio delle funzioni
Lezione 17

07/12/2023

52

Lezione 18

12/12/2023

55

Lezione 19

14/12/2023

58

Lezione 20

15/12/2023

61

Lezione 21

19/12/2023

64

Lezione 22

21/12/2023

67

Lezione 23

22/12/2023

70