

# UNIVERSITY OF SALERNO, ITALY

# A Teaching Proposal: Mechanical Analog of an Over-damped Josephson Junction

I. D'Acunto, R. De Luca, R. Capone

# The Josephson Junction (JJ)

In 1973 B. D. Josephson received the Nobel Prize for having predicted the d. c. and a. c. Josephson effects in a superconducting device consisting of two weakly coupled superconductors. This device was named "Josephson junction" (JJ). The dynamics of the superconducting phase difference  $\phi$ across the junction is described by the Josephson equations [1]:

 $I = I_J \sin \phi \,, \, (1a)$ 

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{2e}{\hbar}V \ , \ (1b)$$



Fig. 2

where I is the current flowing through the junction  $(I_I)$  being the maximum value that can flow in the zero-voltage state),  $\hbar = h / 2\pi$ , h being Planck's constant, and V is the voltage across the two superconductors. In order to describe the dynamics of a the superconducting phase difference  $\phi$  in an over-damped JJ, a Resistively Shunted Junction model can be adopted [2]. In this model a purely superconducting element carrying a current I expressed in terms of  $\phi$  as in Eq. (1a) is placed in parallel with a resistor of resistance R, as shown in fig. 1. By injecting a current  $I_R$  in the system and by invoking charge conservation, we may write:

 $= \pi / 2$ , as it can be noticed by analysing the sign of the derivative  $d\theta / d\tau$  about these fixed points. For  $m_0 = 1$  we have an half-stable solution: the pendulum may swing around *O* whenever an arbitrary small positive perturbation arises. For  $m_0 > 1$ , the function  $\theta = \theta(\tau)$  is monotonically increasing, given that the curves in fig. 3 lie above the  $\theta$ -axis and the derivative  $d\theta / d\tau$  is always positive. In this "running" state" we solve the ordinary differential equation (5) by the method of separation of variables [2], by writing:







Fig. 3 Phase-plane analysis for the overdamped pendulum. The constant forcing term is  $m\hat{\theta} = \hat{\theta}.\theta$  (bottom curve),  $m\theta = 0.75$  (middle curve), and m0 = 1.50 (top curve).



 $\bigcirc$ 

$$\frac{V}{R} + I_J \sin \phi = I_B, (2)$$

where V is the voltage across the JJ. By expressing V in terms of  $\phi$  as in Eq. (1b) and by introducing the

dimensionless quantities  $i_B = I_B / I_J$  and  $\tau = \frac{2\pi R I_J}{\Phi_0} t$  we may rewrite Eq. (2) as follows:  $\frac{\mathrm{d}\phi}{\mathrm{d}\tau} + \sin\phi = i_B, \,(3)$ 

The above equation also represents the dynamics of an over-damped simple pendulum [3].

## **An Over-damped Pendulum**

Let us consider the pendulum hinged in O and consisting of a massless rod of length *l* and a spherical body of radius R and mass m, as shown in fig. 2. This sphere is moving in a fluid of density  $\rho_F$ , so that it is subject to the buoyancy force.  $m^* = m \left( 1 - \frac{4\pi R^3}{3m} \rho_F \right)$  is the effective mass of the sphere, when buoyancy is taken into account. By setting  $m_0(\tau) = \frac{M_0(\tau)}{m^* g(l+R)}$ , where M0 is the applied torque and  $\tau = \frac{m^* g}{6\pi \eta R(l+R)} t$  is a dimensionless time variable,

For 
$$\frac{m^* m g \left(l^2 + 2Rl + \frac{7R^2}{5}\right)}{(6\pi\eta R)^2 (l+R)^3} <<1, (4)$$

we may write the following dynamical equation for the over-damped pendulum:

Fig. 4 Normalized time dependence of the characteristics of an over-damped Josephson junction. We notice that angular frequency (full line) of an over-damped pendulum subject to a constant the function is  $\frac{d\theta}{d\tau}$  periodic with period equal to  $T = \frac{2\pi}{\sqrt{m_c^2 - 1}}$ . forcing equal to  $m_0 = 1.50$ .

On the other hand, the time-averaged value of  $\frac{d\theta}{d\tau}$  can be calculated as follows:

$$\left\langle \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right\rangle = \frac{1}{T} \int_{0}^{T} \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \,\mathrm{d}\tau = \frac{\theta(T) - \theta(0)}{T} = \frac{2\pi}{T}, \ (8)$$

so that it is proven that the average value of the angular frequency curves is  $\sqrt{m_0^2 - 1}$ . From Eq. (8) we can then argue that:

$$m_0 = \sqrt{1 + \left\langle \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right\rangle^2} \,, \, (9)$$

for  $m_0 < 1$  the pendulum is in static equilibrium, so that  $\left\langle \frac{\mathrm{d}\theta}{\mathrm{d}\tau} \right\rangle = 0$ . The same happens in a Josephson junction: when the value of the normalized bias current  $i_{B}$  is less than one, the junction is said to be in the superconducting or zero-voltage state. Therefore, no current flows in the resistive branch of the RSJ model in fig. 1, so that the curve climbs vertically from 0 to 1 just as shown in fig. 5. However, when  $i_{R} > 1$ , the resistive branch is activated and a finite voltage appears across the junction, in the way described in fig. 5. We also notice that the  $m_0$  versus  $\left\langle \frac{d\theta}{d\tau} \right\rangle$  curve presents the oblique asymptote  $m_0 = \left\langle \frac{d\theta}{d\tau} \right\rangle$ . In fact, for large enough values of  $m_0$ , this driving moment becomes predominant with respect to the nonlinear sine term in

Eq. (5), thus justifying the observed asymptotic.



Fig. 5 Normalized forcing term versus the time average of the angular frequency (full line) of an overdamped pendulum.

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} + \sin\theta = m_0(\tau), \, (5)$$

### **Constant Driving Moment**

Let us take a constant forcing term of the over-damped pendulum: in this case we can obtain analytic solutions for the differential equation (5). for  $m_0 < 1$ , we obtain two constant solutions, one stable, one unstable, as it can be argued by means of the phase-plane analysis shown in fig. 3. The stable solution is given by:

 $\theta^* = \sin^{-1} m_0, (6)$ 

while the unstable solution is at  $\theta = \pi - \theta^*$ . The stability regime changes as the angle crosses the value  $\theta$ 

### Conclusions

2.0

 $\frac{d\theta}{d\tau}$  1.5

The present work is devoted to teachers who are willing to actually construct the mechanical analog. The

properties of an over-damped Josephson junction have been analysed by means of a mechanical analogue:

an over-damped pendulum: being the physical properties of a pendulum more familiar to students, the

Josephson junction dynamics in the over-damped limit may be derived by analogy.

### References

[1] B. D. Josephson, Phys. Lett. 1, 251 (1963).

[2] A. Barone and G. Paternò, Physics and applications of the Josephson Effect (New York, Wiley, 1982).

[3] D. B. Sullivan and J. E. Zimmerman, Am. J. Phys. 39, 1504 (1971).