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The Josephson Junction (JJ)

In 1973 B. D. Josephson received the Nobel Prize for having predicted the 

d. c. and a. c. Josephson effects in a superconducting device consisting of 

two weakly coupled superconductors. This device was named “Josephson 

junction” (JJ). The dynamics of the superconducting phase difference φ

across the junction is described by the Josephson equations [1]:
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where I is the current flowing through the junction (IJ being the maximum value that 

can flow in the zero-voltage state), ħ = h / 2π, h being Planck’s constant, and V is 

the voltage across the two superconductors. In order to describe the dynamics of a 

the superconducting phase difference φ  in an over-damped JJ, a Resistively Shunted 

Junction model can be adopted [2]. In this model a purely superconducting element 

carrying a current I expressed in terms of φ  as in Eq. (1a) is placed in parallel with a 

resistor of resistance R, as shown in fig. 1. By injecting a current IB in the system and 

by invoking charge conservation, we may write:
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where V is the voltage across the JJ. By expressing V in terms of φ  as in Eq. (1b) and by introducing the 

dimensionless quantities iB=IB/IJ and tRI J
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The above equation also represents the dynamics of an over-damped simple pendulum [3].

An Over-damped Pendulum

Let us consider the pendulum hinged in O and consisting of a massless rod of length l and a spherical body 

of radius R and mass m, as shown in fig. 2. This sphere is moving in a fluid of density ρF, so that it is subject 

to the buoyancy force. 
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we may write the following dynamical equation for the over-damped pendulum:
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Constant Driving Moment

Let us take a constant forcing term of the over-damped pendulum: in this case we can obtain analytic solutions 

for the differential equation (5). for m0 < 1, we obtain two constant solutions, one stable, one unstable, as it 

can be argued by means of the phase-plane analysis shown in fig. 3. The stable solution is given by:

0
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while the unstable solution is at *θπθ −= . The stability regime changes as the angle crosses the value θ 

= π / 2, as it can be noticed by analysing the sign of the derivative 

dθ / dτ about these fixed points. For m0 = 1 we have an half-stable 

solution: the pendulum may swing around O whenever an arbitrary 

small positive perturbation arises. For m0 > 1, the function θ = θ(τ) is 

monotonically increasing, given that the curves in fig. 3 lie above the 

θ-axis and the derivative dθ / dτ is always positive. In this “running 

state” we solve the ordinary differential equation (5) by the method 

of separation of variables [2], by writing:
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where θ = θ(0).

By finding the function θ = θ(τ) we may calculate the time average τ
θ
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of the angular frequency τ
θ
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 as a function of the constant forcing term 

m0. This analysis is important, given that the m0 versus τ
θ

d
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  curves 

correspond to the normalized current iB versus average voltage τ
φ
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characteristics of an over-damped Josephson junction. We notice that 

the function is τ
θ
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On the other hand, the time-averaged value of τ
θ

d
d  can be calculated as follows:
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so that it is proven that the average value of the angular frequency curves is 12
0 −m . From Eq. (8) we can 

then argue that:
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for m0  < 1 the pendulum is in static equilibrium, so that 0
d
d

=
τ
θ . The same 

happens in a Josephson junction: when the value of the normalized bias 

current iB is less than one, the junction is said to be in the superconducting 

or zero-voltage state. Therefore, no current flows in the resistive branch of 

the RSJ model in fig. 1, so that the curve climbs vertically from 0 to 1 just 

as shown in fig. 5. However, when iB > 1, the resistive branch is activated 

and a finite voltage appears across the junction, in the way described in fig. 

5. We also notice that the m0 versus τ
θ

d
d  curve presents the oblique asymptote τ

θ
d
d

0 =m . In fact, for large 

enough values of m0, this driving moment becomes predominant with respect to the nonlinear sine term in 

Eq. (5), thus justifying the observed asymptotic.

Conclusions

The present work is devoted to teachers who are willing to actually construct the mechanical analog. The 

properties of an over-damped Josephson junction have been analysed by means of a mechanical analogue: 

an over-damped pendulum: being the physical properties of a pendulum more familiar to students, the 

Josephson junction dynamics in the over-damped limit may be derived by analogy.
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Fig. 3 Phase-plane analysis for the over-
damped pendulum. The constant forcing term 
is m0 = 0.0 (bottom curve), m0 = 0.75 (middle 
curve), and m0 = 1.50 (top curve).

Fig. 4 Normalized time dependence of the 
angular frequency (full line) of an over-
damped pendulum subject to a constant 
forcing equal to m0=1.50.

Fig. 5 Normalized forcing term 
versus the time average of the angular 
frequency (full line) of an over-
damped pendulum.
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