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Abstract

The topic concerning the role of symmetry in calculating the equivalent resistance of regular 

networks has been addressed to the students of Lyceum “Imbriani” in Avellino ad of Lyceum 

“De Caprariis” in Atripalda, in two successive years. These activities were part of the PLS project 

carried out at University of Salerno. The calculation and meansurement methods adopted show 

that subject can be easily introduced as a lecture and as a laboratory session in High School; 

after having introduced the traditional concept of equivalent resistance of series and parallel 

connections of resistors.

Introduction

The concept of equivalent resistance in series and parallel connections of resistors is rarely 

extended to more complex networks in High School physics lectures. Howewer, it is possible 

to show that those concepts can be extended to find the equivalent resistance of networks 

possessing specific geometrical properties. In this project we have shown that, by making 

use of particular symmetries of regular networks, the equivalent resistance, as measured by 

connecting two leads to two nodes of the network itself, can be calculated with no much more 

effort than in usual cases. The role of symmetry in infinite networks shaped as regular platonic 

or archimedian solids has been highlighted.

Infinite Networks

With this work we addressed the problem of 

searching for the equivalent resistance between 

two nodes of bi-dimensional networks mainly 

using the symmetric properties of the circuit. The 

network can be symmetrical with respect to a point “central symmetry”, with respect to a line 

“axial symmetry” and with respect to a plane “mirror symmetry”.

Axial Symmetry

Platonic Solids

If we put a electromotive force between the points A and B of 

the solid, the points C, D, E, F, G (V1) and the points H, I, L, M, N 

(V2) are at the same voltage. Both the first and second group of 

vertices can be considered electrically as a macro node, thus being 

connected to the same nodes, the resistances  of these branches 

CH – HD – DI – IE – FL – FM – MG – NG – NC are, as a result, in 

parallel. Branches AC – AD – AE – AF – AG and branches BH – BL 

– BN  are in parallel. The equivalent resistance is R/2 and is the sum of the 3 in series resistances 

with value R/5, R/10 and R/5.

The Laboratory

As a first step, students constructed three-dimensional models 

of platonic solids using thin cardboard. Subsequently, they 

numbered the edges, so that they could implement Laplace’s 

method and calculated the matrix ratio with the software 

Microsoft Excel. They then built paper models also for some 

Archimedean solids: in this way, they could experiment the 

validity of the calculation method, already used for platonic solids. As a second step, students 

fabricated Platonic and Archimedean solids in the lab, using identical resistances of 2200 Ω, 

1800 Ω, 1200 Ω, 22000 Ω and 10 Ω. Lastly, they measured the equivalent resistances (Req) 

between some of the vertices of the three-dimensional networks and verified the theoretical 

model.

Conclusions

The theoretical values calculated in the table are affected by the error of 5% due to the value 

of the resistances used. The experimental results are , therefore, within the limits of error, 

comparable with the theoretical model of the proposed method.
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Tetrahedron (2200+ 5%) W Req = (1, 2) (1100 +  5%) W (1100 +  5%) W  (1097,5 + 0,1) W
Cube (1800+ 5%) W Req = (1, 2) (1050 +  5%) W (1050 +  5%) W  (1050,0 + 0,1) W

Req = (4, 8) (1350 +  5%) W   (1349,2 + 0,1) W
Req = (1, 5) (1500 +  5%) W   (1500,0 + 0,1) W

Octahedron (1200+ 5%) W Req = (1, 2) (600 +  5%) W (600 +  5%) W  (598,6 + 0,1) W
Req = (1, 4) (500 +  5%) W   (497,0 + 0,1) W

Icosahedron (1800+ 5%) W Req = (1, 2) (660 +  5%) W (660 +  5%) W  (662,0 + 0,1) W
Req = (1, 8) (900 +  5%) W   (904,6 + 0,1) W
Req = (1, 5) (840 +  5%) W   (842,0 + 0,1) W

Dodecahedron (2200+ 5%) W Req = (1, 2) (1393 +  5%) W (1393 +  5%) W  (1386,5 + 0,1) W
Req = (1, 14) (2567 +  5%) W   (2568,8 + 0,1) W
Req = (1, 3) (1980 +  5%) W   (1977,0 + 0,1) W
Req = (1, 18) (2493 +  5%) W   (2499,4 + 0,1) W
Req = (1, 17) (2347 +  5%) W   (2348,9 + 0,1) W

Cuboctahedron (22000+ 5%) W Req = (1, 4) (10083 +  5%) W   (10123,0 + 0,1) W
Req = (1, 12) (14667 +  5%) W   (14706,0 + 0,1) W

Truncatred Octahedron (10,0+ 5%) W Req = (1, 2) (6,2 +  5%) W   (6,2 + 0,1) W
Req = (7, 8) (6,8 +  5%) W   (6,8 + 0,1) W

Truncatred tetrahedron (10,0+ 5%) W Req = (1, 2) (7,0 +  5%) W   (6,9 + 0,1) W
Req = (1, 7) (5,7 +  5%) W   (5,7 + 0,1) W
Req = (1, 12) (11,0 +  5%) W   (10,9+ 0,1) W
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