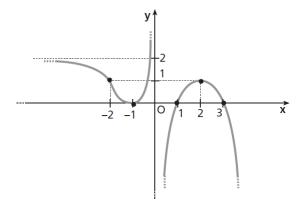
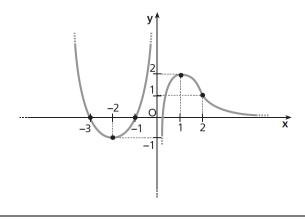

CALCOLO DIFFERENZIALE - APPLICAZIONI E COMPLEMENTI


1	Calcola il valore di a e b in modo che il grafico della funzione $y = ax^3 + bx^2 + 4x + 1$ abbia un massimo nel punto di coordinate $(-2;1)$. Argomenta con adeguate motivazioni	[a=1,b=4]
2	Calcola il valore di a e b in modo che il grafico della funzione $y = ax^3 + bx^2 + x + 1$ abbia un massimo nel punto di coordinate $(-1;1)$. Argomenta con adeguate motivazioni	[a=1,b=2]
3	Calcola il valore di a e b in modo che il grafico della funzione $y = \frac{ax+b}{x^2-x-2}$ abbia un massimo di ascissa $x=0$ e passi per il punto di coordinate $\left(1;-\frac{3}{2}\right)$. Argomenta con adeguate motivazioni	[a=1,b=2]
4	Calcola il valore di a e b in modo che il grafico della funzione $y = \frac{ax+b}{x^2-x-2}$ abbia un massimo di ascissa $x=0$ e passi per il punto di coordinate $\left(1;\frac{3}{2}\right)$. Argomenta con adeguate motivazioni	[a = -1, b = -2]
5	In figura è rappresentato il grafico della funzione $y = f'(x)$. a. Descrivi la funzione ad un matematico ipovedente; b. traccia un possibile andamento della funzione $y = f(x)$.	
6	In figura è rappresentato il grafico della funzione $y = f'(x)$. a. Descrivi la funzione ad un matematico	
L		

ipovedente;


b. traccia un possibile andamento della funzione y = f(x)

- 7 In figura è rappresentato il grafico della funzione y = f(x).
 - a. Descrivi la funzione;
 - b. traccia l'andamento del grafico della sua derivata prima.

- In figura è rappresentato il grafico della funzione y = f(x).
 - a. Descrivi la funzione;
 - b. traccia l'andamento del grafico della sua derivata prima.

LA RISOLUZIONE APPROSSIMATA DI UN'EQUAZIONE

9	Aiutandoti con un grafico, separa eventuali radici della seguente equazione.	[una radicein [-2;-1]]
	$x^3 - 2x + 2 = 0$	
10	Aiutandoti con un grafico, separa eventuali radici della seguente equazione. $x^3 - 4x + 4 = 0$	[una radice in [-3;-2]]
11	Aiutandoti con un grafico, separa eventuali radici della seguente equazione. $\ln(x^2 - x + 4) = x$	[una radice in [1;2]]
12	Aiutandoti con un grafico, separa eventuali radici della seguente equazione. $\ln(x^2 + x + 4) = x$	[una radice in [2;3]]
13	Dopo avere verificato che in ciascuno degli intervalli indicati ognuna delle seguenti equazioni ammette una sola radice, cerca di approssimarla mediante il $metodo di$ $bisezione$ con $n=4$ passi di iterazione. Indica l'ultimo intervallo ottenuto e determina l'errore.	
14	$x^5 + 6x^3 - 1 = 0$, [0;1].	$\left[\frac{17}{32}, \left[\frac{1}{2}; \frac{9}{16}\right], \varepsilon = \frac{1}{32}\right]$
15	$x^5 + 7x^3 - 5 = 0$, [0;1].	$\left[\frac{27}{32}, \left[\frac{13}{16}; \frac{7}{8}\right], \varepsilon = \frac{1}{32}\right]$
16	$e^{-2x} + x^2 - 3 = 0$, [1; 2].	$\left[\frac{55}{32}, \left[\frac{27}{16}; \frac{7}{4}\right], \varepsilon = \frac{1}{32}\right]$
17	$e^{-3x} + x^2 - 2 = 0$, [1;2].	$\left[\frac{45}{32}, \left[\frac{11}{8}; \frac{23}{16}\right], \varepsilon = \frac{1}{32}\right]$
18	$xe^{-3x} + 2 = 0$, $[-1;0]$.	$\left[-\frac{15}{32}, \left[-\frac{1}{2}; -\frac{7}{16}\right], \varepsilon = \frac{1}{32}\right]$
19	$xe^{-2x} + 3 = 0$, $[-1;0]$.	$\left[-\frac{23}{32}, \left[-\frac{3}{4}; -\frac{11}{16}\right], \varepsilon = \frac{1}{32}\right]$
20	$4 \sin^2 x + 7 \sin x - 2 = 0, \ \left[0; \frac{\pi}{2} \right]$	$\left[\frac{5}{64}\pi, \left[\frac{\pi}{16}; \frac{3}{32}\pi\right], \varepsilon = \frac{\pi}{64}\right]$
21	$3 \operatorname{sen}^2 x + 11 \operatorname{sen} x - 4 = 0, \left[0; \frac{\pi}{2}\right]$	$\left[\frac{7}{64}\pi, \left[\frac{3}{32}\pi; \frac{\pi}{8}\right], \varepsilon = \frac{\pi}{64}\right]$
	Per ognuna delle seguenti equazioni, dopo aver verifica localizzato le radici, determinane le prime <i>k</i> cifre decin <i>secanti</i> .	=
22	$x^4 + 2x - 2 = 0, \ k = 4.$	[-1,4945; 0,7976]
23	$x^4 + 3x - 3 = 0, \ k = 4.$	[-1,6846; 0,8366]

24	$x^3 + x^2 + x + 2 = 0, \ k = 4.$	[-1,3532]	
25	$x^3 - x^2 - x + 2 = 0, \ k = 4.$	[-1,2055]	
26	$x^4 + x^3 + 3x - 3 = 0, \ k = 3.$	[-2,055; 0,751]	
27	$x^4 + x^3 + 2x - 2 = 0, \ k = 3.$	[-1,873; 0,703]	
28	$4\cos^2 x + 7\cos x - 2 = 0, \ x \in \left[0; \frac{\pi}{2}\right], k = 5.$	[1,31812]	
29	$3\cos^2 x + 11\cos x - 4 = 0, \ x \in \left[0; \frac{\pi}{2}\right], k = 5.$	[1,23096]	
	Per ognuna delle seguenti equazioni, dopo aver verificato l'esistenza e dopo aver localizzato le radici, determinane le prime sei cifre decimali mediante il <i>metodo delle tangenti</i> .		
30	$x^5 + x^2 - 1 = 0$	[0,808731]	
31	$x^5 + 2x^2 - 2 = 0$	[0,868069]	
32	$e^{\frac{x}{4}} + \sqrt[4]{x} = 2$	[0,537412]	
33	$e^{\frac{x}{6}} + \sqrt[6]{x} = 2$	[0,547457]	
34	$e^{\sin x} + \sqrt{x} = 2$	[0,349708]	
35	$e^{-\cos x} + \sqrt{x} = 2$	[1,378391]	

LO STUDIO DI UNA FUNZIONE

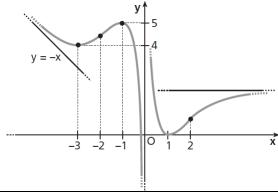
Traccia il grafico della funzione avente le seguenti caratteristiche. **36** a) Il dominio è $\mathbf{R} - \{0, 1\}$.

b) Non interseca gli assi cartesiani. c) f(x) > 0 per 0 < x < 1, f(x) < 0 per x < 0 o x > 1.

d) Esistono gli asintoti verticali x = 0, x = 1; esiste l'asintoto orizzontale y = 0.

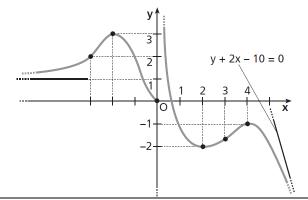
e) È presente un minimo in $\left(\frac{1}{2};8\right)$.

f) Non vi sono flessi.


37 Traccia il grafico della funzione avente le seguenti caratteristiche.

- a) Il dominio è $\mathbf{R} \{-1, 0\}$.
- b) Non interseca gli assi cartesiani.
- c) f(x) > 0 per -1 < x < 0, f(x) < 0 per x < -1 o x > 0.
- d) Esistono gli asintoti verticali x = -1, x = 0; esiste l'asintoto orizzontale y = 0.
- e) È presente un minimo in $\left(-\frac{1}{2};8\right)$.

f) Non vi sono flessi.


38 Dal grafico in figura deduci:

- 1. il dominio della funzione;
- 2. le intersezioni con gli assi;
- 3. gli intervalli in cui la funzione è positiva e quelli in cui è negativa;
- 4. i limiti agli estremi del dominio e le equazioni degli asintoti;
- 5. gli intervalli in cui la funzione è crescente e quelli in cui è decrescente;
- 6. i punti di massimo e di minimo relativi;
- 7. i punti di flesso, evidenziando le concavità.

39 Dal grafico in figura deduci:

- 1. il dominio della funzione;
- 2. le intersezioni con gli assi;
- 3. gli intervalli in cui la funzione è positiva e quelli in cui è negativa;
- 4. i limiti agli estremi del dominio e le equazioni degli asintoti;
- 5. gli intervalli in cui la funzione è crescente e quelli in cui è decrescente;
- 6. i punti di massimo e di minimo relativi;
- 7. i punti di flesso, evidenziando le concavità.

MATEMATICA PER L'INGEGNERIA

Legge di Poiseuille

Il flusso F (in litri al minuto) di un fluido in un tubo è proporzionale alla quarta potenza del raggio del tubo:

$$F = kr^4$$

Di quanto deve aumentare il raggio del tubo in percentuale per avere un aumento del flusso del 10%?

La Portata

La sezione di una è attraversata da una massa d'acqua variabile con il tempo secondo la legge $m=3t^3-27t+2$ (la massa è misurata in Kg). Calcola la portata all'istante t=4 s

Effetto di un battericida

Il numero N(t) di batteri in una colonia ancora in vita t minuti dopo la somministrazione di un battericida è espresso dalla funzione

$$N(t) = \frac{12000}{t^2 + 3} + 1000$$

- a. quanti batteri sono ancora in vita 1 minuto dopo la somministrazione dell'antibatterico?
- b. Trova a quale velocità (espressa in batteri al minuto) stanno decrescendo i batteri della colonia 3 minuti dopo la somministrazione del battericida.

[a. 4000; b. -500 batteri/min]

Effetto di un farmaco

La concentrazione C di un farmaco nel flusso sanguigno dopo un tempo di t ore è espressa dalla funzione

$$C(t) = \frac{4t}{k + \left(\frac{t}{k}\right)^2}$$

dove k è una costante positiva. Determina la costante k, se la massima concentrazione viene raggiunta dopo 4 ore.