ESERCIZI SUL CALCOLO DIFFERENZIALE

Continuità e derivabilità

Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco

1	$f(x) = \sqrt{4 - x + 3x}, x = 0$	3	$f(x) = \begin{cases} \sqrt{x} - 2 & \text{se } x < 1\\ x^2 - x - 1 & \text{se } x \ge 1 \end{cases}$
2	f(x) = 2x - 4 + x , x = 2		

Si trovi, se possibile, a e b in modo che le seguenti funzioni siano derivabili nel punto a fianco indicato

1	$f(x) = \begin{cases} ax + b & per \ x < 2 \\ x^2 - 4 & per \ x \ge 2 \end{cases}$	x = 2	[a=4; b=-8]
2	$f(x) = \begin{cases} \sqrt{-x} - 1 & \text{se } x \le -1\\ ax + b & \text{se } x > -1 \end{cases}$	x = -1	[a=-1/2; b=-1/2]

Calcola la derivata delle seguenti funzioni

1	$y = 2e^x + 2x - \cos x$	19	$y = \cot\left(x^2 + x\right)$
2	$y = 3e^x + 4x - \sin x$	20	$y = e^{\cos \ln x}$
3	$y = (x - \ln x) \cdot (\sin x + 3)$	21	$y = e^{\operatorname{sen} \ln x}$
4	$y = (x + \ln x) \cdot (\cos x + 2)$	22	$y = \frac{\cos(2x+1)}{\sin(2-x)}$
5	$y = x \cdot 2^x \cdot \cos x$	23	$y = \frac{\operatorname{sen}(2x+1)}{\operatorname{cos}(2-x)}$
6	$y = x \cdot 3^x \cdot \operatorname{sen} x$	24	$y = 2x^2 \ln x$
7	$y = 2x^4 - x^3 + 3x - 1$	25	$y = 3x^2 \ln x$
8	$y = 3x^4 - 2x^2 + 2x + 3$	26	$y = e^{3x} + x^2 - \ln(x+2)$
9	$y = \sqrt{x} + 3\sqrt[3]{x} + 4\sqrt[4]{x}$	27	$y = 2 \operatorname{sen}^3 x + \cos^2 x$
10	$y = 2\sqrt{x} + 3\sqrt[3]{x} - 5\sqrt[5]{x}$	28	$y = \cos^3 x + 2\sin^2 x$
11	$y = \left(x^3 + 2x^2 + x\right) \cdot \ln x$	29	$y = \sqrt[3]{x^2 + 2x + 3}$
12	$y = \left(x^3 - x^2 + 2x\right) \cdot \ln x$	30	$y = \sqrt[4]{x^2 + x - 1}$
13	$y = \frac{x^2 - x + 3}{x^4 + 3}$	31	$y = \sqrt{\frac{x^2 + 2}{\operatorname{sen}(\pi x)}}$
14	$y = \frac{x^2 + 2x + 2}{x^3 + 2}$	32	$y = \sqrt{\frac{x^2 + 2}{\cos(\pi x)}}$
15	$y = \frac{2e^x + x + \ln x}{x^2}$	33	$y = \operatorname{tg}\left(x^2 + 2x\right)$

16	$y = \frac{e^x + 2x - \ln x}{2x^2}$	34	$y = \arctan \frac{\ln x}{x^2}$
17	$y = \frac{1 + \sin x - \cos x}{1 - \sin x}$	35	$y = \operatorname{arccotg} \frac{\ln x}{x^2}$
18	$y = \frac{1 - \sin x + \cos x}{1 + \cos x}$	36	$y = \arcsin\sqrt{x} \cdot \ln(2x^2 + 3x)$

Ulteriori esercizi

27	x^2	47	
37	$f(x) = e^{x^2}$	47	$f(x) = \frac{3x^4 - 2x^2 + 4}{x^3}$
38	$f(x) = e^{x^2 - 2}$	48	$f(x) = \frac{8x+2}{\sqrt[4]{4x+1}}$
39	$f(x) = \log\left(\sqrt{\sin\frac{3}{4}\pi}\right)$	49	$f(x) = 4artg\sqrt{\frac{1+x}{1-x}}$
40	$f(x) = \frac{x^3}{1 - x^4}$	50	$f(x) = arctg\left(\frac{1 - 2x^2}{x^3 - 2x}\right)$
41	$f(x) = \frac{3x^2 + 4x}{x^2 - 2x}$	51	$f(x) = \frac{4(x-1)}{x} + \log(x^2 + 1)^4$
42	$f(x) = \sqrt{\frac{1-x}{x+3}}$	52	$f(x) = \frac{2e^x}{e^x - 2}$
43	$f(x) = \frac{\sqrt{1 + x^2}}{2x}$	53	$f(x) = \log^2 x - 4\log x + 3$
44	$f(x) = \log\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)$	54	$f(x) = (x-1)e^{3-x}$
45	$f(x) = tg^3x$	55	$f(x) = \frac{1}{2}log(x^2 + 1) - xarctgx$

Retta tangente e normale ad una curva

L'espressione analitica della retta tangente alla curva y = f(x) nel punto P_0 di ascissa x_0 è:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

L'espressione analitica della retta normale alla curva y = f(x) nel punto P_0 di ascissa x_0 è l'equazione della retta perpendicolare alla retta tangente nello stesso punto:

$$y - f(x_0) = \frac{1}{f'(x_0)}(x - x_0)$$

ESERCIZIO SVOLTO

Calcolare l'equazione della retta normale alla curva

$$y = x^3 - \sqrt{x^3 + 3}$$

nel punto di ascissa $x_0 = 2$.

Il punto di contatto ha coordinate $P_0(2; 5)$. La derivata della funzione è

$$y' = 3x^2 - \frac{3x^2}{2\sqrt{x^3 + 1}}$$

Il coefficiente angolare della retta tangente è y'(2) = 10. Quindi, l'equazione della retta cercata è:

$$y - 5 = 10(x - 2)$$

$$y = 10x - 15$$

ESERCIZI DA SVOLGERE

Scrivere l'equazione della retta tangente alle curve nel punto a fianco indicato:

1	$f(x) = 5x^2 - 3x + 1, x_0 = 0$
2	$f(x) = -3x^2 + 2, x_0 = 2$
3	$f(x) = 2x - \sqrt{x^3 + 2}, x_0 = 1$
4	$f(x) = \frac{1}{x} + x^2, x_0 = 2$

5	$f(x) = x \sqrt{\frac{3x+1}{2x-1}}, x_0 = 3$
6	$f(x) = e^{x+1} - \frac{x^2}{2}, \qquad x_0 = 0$
7	$f(x) = x^2 log x, x_0 = 1$
8	$f(x) = \cos x + \tan x, x_0 = \pi$
9	$f(x) = e^{3x} \log(x^2 + 1), x_0 = 0$
10	Stabilire se la funzione
	$f(x) = \begin{cases} 0 & per \ x \ge 0 \\ x^3 - 2x & per \ x < 0 \end{cases}$
	è continua e derivabile nell'origine e se esistono punti del grafico in cui la retta tangente è parallela alla bisettrice del II e IV quadrante.
11	Individuare i punti del grafico della funzione
	$y = \frac{x^3 + 2x^2 - 1}{2x + 3}$
	in cui la tangente ha coefficiente angolare pari a -1

Teorema di De L'Hospital

Esercizio svolto 1

Calcolare il seguente limite:

$$\lim_{x \to 0} \frac{2x + sinx}{x - 2sinx}$$

Il limite si presenta nella forma indeterminata 0/0. Applicando il teorema di De L'Hospital, si ha:

$$\lim_{x \to 0} \frac{2x + \sin x}{x - 2\sin x} = \lim_{x \to 0} \frac{2 + \cos x}{1 - 2\cos x} = -3$$

Esercizio svolto 2

Calcolare il seguente limite:

$$\lim_{x \to 0} \frac{-x + \sin x}{2x \sin^2 x}$$

Il limite si presenta nella forma indeterminata 0/0. Applicando la regola di De L'Hospital, si ha che, poiché 2sinxcosx = sin2x:

$$\lim_{x \to 0} \frac{-x + sinx}{2xsin^2x} = \lim_{x \to 0} \frac{-1 + cosx}{2sin^2x + 2xsin2x} = \lim_{x \to 0} \frac{-sinx}{4sin2x + 4xcos2x} = \lim_{x \to 0} \frac{-cosx}{8cos2x + 4cos2x - 8xsin2x} = -\frac{1}{2}$$

Utilizzando la regola di De L'Hospital, calcolare i seguenti limiti:

1	$\lim_{x \to 0} \frac{\ln(x+1)}{x^2 - x}$	13	$\lim_{x \to 0^+} \left[x^2 \cdot \ln \left(\frac{1}{x} + 1 \right) \right]$
2	$\lim_{x \to 0} \frac{e^x - 1}{\operatorname{sen} x + x}$	14	$\lim_{x\to+\infty} \left[(x+2)e^{-x} \right]$
3	$\lim_{x \to 0^+} \frac{\ln\left(x+1\right)}{x^2 + 2x}$	15	$\lim_{x \to 0^+} \left[x^2 \cdot \ln\left(\frac{2}{x} - 1\right) \right]$
4	$\lim_{x \to 0^+} \frac{\ln x}{\ln \left(x^2 + 2x\right)}$	16	$\lim_{x\to+\infty} \left[(x-1)e^{-2x} \right]$
5	$\lim_{x \to 0^+} \frac{\ln\left(2x^2 + x\right)}{\ln x}$	17	$\lim_{x \to 0} \frac{x^2 + \sin x}{x^2 - x}$
6	$\lim_{x \to 0} \frac{2e^x - 2}{\sin x - 2x}$	18	$\lim_{x \to 0} \frac{x - x \cos x}{\ln(x+1)}$
7	$\lim_{x \to +\infty} \frac{x^2 + x}{e^x + x}$	19	$\lim_{x \to 0} \frac{x^2 - \sin x}{x^2 + x}$
8	$\lim_{x \to +\infty} \frac{1 - e^x}{x^2 - x}$	20	$\lim_{x \to 0} \frac{x \cos x - x}{\ln(1 - x)}$
9	$\lim_{x \to 0^+} \left[x^2 \cdot \ln(\operatorname{sen} x) \right]$	21	$\lim_{x\to-\infty} \left[\left(x^2 - x \right) e^x \right]$
10	$\lim_{x\to 0^+} \left[x^2 \cdot \ln\left(1-\cos x\right) \right]$	22	$\lim_{x \to -\infty} \left[e^x \left(x^2 - 2x \right) \right]$
11	$\lim_{x \to \infty} \frac{6\sqrt[3]{x} - \sqrt{x}}{3x^2 - \sqrt{x}} = 0$	23	$\lim_{x \to \infty} \frac{2^{3x} - 6(2^{2x}) - arctg8x}{2^{3x} + 4x} = 1$

$$\lim_{x \to 0^{+}} \frac{e^{\frac{1}{x}} + \frac{1}{x}}{\frac{1}{x}} = +\infty$$

$$24$$

$$\lim_{x \to 0} \frac{x + 2 - \sqrt{x^{2} - x + 4}}{3x} = \frac{5}{12}$$

Rappresenta la funzione assegnata e determina gli intervalli in cui f(x) è continua e quelli in cui è derivabile

1	$f(x) = \left \operatorname{sen} \left(x - \frac{2}{3} \pi \right) \right $	continua su R ; derivabilesu $\frac{2}{3}\pi + k\pi; \frac{5}{3}\pi + k\pi$ $k \in \mathbb{Z}$
2	$f(x) = \left \cos \left(x + \frac{\pi}{6} \right) \right $	continua su R ; derivabilesu $\frac{1}{3}\pi + k\pi; \frac{4}{3}\pi + k\pi$ $k \in \mathbb{Z}$
3	$f(x) = \sqrt{\ln(x-2)}$	[continua su $[3;+\infty[$; derivabile su $]3;+\infty[$]
4	$f(x) = \sqrt{\ln(3-x)}$	[continua su] $-\infty$;2]; derivabile su] $-\infty$;2[]

Teorema di Lagrange

Date le seguenti funzioni, verifica che nell'intervallo indicato a fianco valgono le ipotesi del teorema di Lagrange e trova il punto (o i punti) la cui esistenza è assicurata dal teorema.

1	$y = x^3 + 2x + 3$, $[-3;0]$	$\left[c = -\sqrt{3}\right]$
2	$y = -x^3 - 2x + 3$, $[-3;0]$	$\left[c = -\sqrt{3}\right]$
3	$y = 2 \operatorname{sen}^2 x + \cos^2 x, [0; \pi]$	$\left[c = \frac{\pi}{2}\right]$
4	$y = -\sin^2 x + \cos^2 x$, [0;2 π]	$\left[c_1 = \frac{\pi}{2}; c_2 = \pi; c_3 = \frac{3}{2}\pi\right]$

Teorema di Rolle

Data la seguente funzione, verifica che nell'intervallo indicato a fianco valgono le ipotesi del teorema di Rolle e trova il punto (o i punti) la cui esistenza è assicurata dal teorema.

1	$y = \frac{1}{x^4 - x^2 + 1}, [-2; 2]$	$\left[c_1 = -\frac{\sqrt{2}}{2}; c_2 = 0; c_3 = \frac{\sqrt{2}}{2}\right]$
2	$y = -\frac{2}{2x^4 - x^2 + 3}$, $[-1;1]$	$\left[c_1 = -\frac{1}{2}; c_2 = 0; c_3 = \frac{1}{2}\right]$

Teorema di Cauchy

Date le seguenti funzioni, verifica che nell'intervallo indicato a fianco valgono le ipotesi del teorema di Cauchy e trova il punto (o i punti) la cui esistenza è assicurata dal teorema.

1	$f(x) = \frac{1}{x+2}, \ g(x) = \frac{x+2}{3x}, \ [1; 2].$	$\left[c = \frac{2 + 2\sqrt{6}}{5}\right]$
2	$f(x) = \frac{1}{x+1}, g(x) = \frac{x-1}{2x-1}, [-1;0].$	$\left[c = \frac{1 - \sqrt{6}}{5}\right]$

PROBLEMI

Problema n°1

Date le funzioni $f(x) = x + |x^2 - 2x|$ e $g(x) = x - |x^2 - 2x|$:

- a) calcola le derivate f'(x) e g'(x) e le relative condizioni di esistenza;
- b) disegnato il grafico delle due funzioni, indica i valori di x per i quali le funzioni non sono derivabili precisando se per tali valori le funzioni sono però continue;
- c) trova gli eventuali valori di x per i quali f(x) e g(x) hanno tangenti parallele.

S:
$$\begin{bmatrix} a \\ f'(x) = 2x - 1 \\ f'(x) = -2x + 3 \end{bmatrix}$$
 se $x \le 0 \lor x \ge 2$; b) $x = 0$ e $x = 2$; sì; c) $x = 1$

Problema n°2

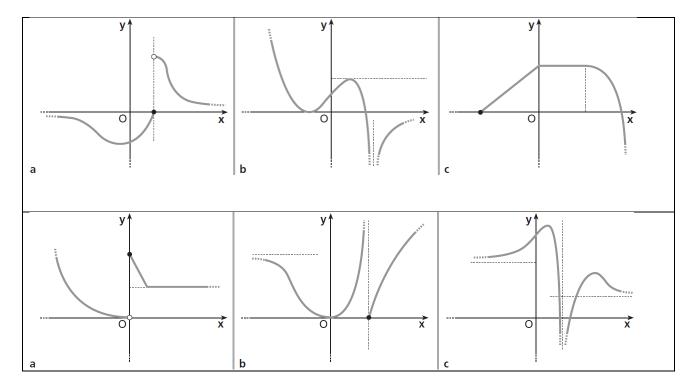
Data la funzione $f(x) = \begin{cases} 6x^2 + ax + 2 & \text{se } b \le x < 0 \\ ce^x - 1 & \text{se } 0 \le x \le \ln 2 \end{cases}$

- a) trova a, b, c, in modo che f(x) soddisfi le ipotesi del teorema di Rolle in $[b; \ln 2]$ e determina il punto x_0 che verifica il teorema;
- b) rappresenta graficamente f(x);
- c) determina, se esiste nell'intervallo in cui è definita f(x), un punto P in cui la tangente è perpendicolare alla retta di equazione x + 6y = 0.

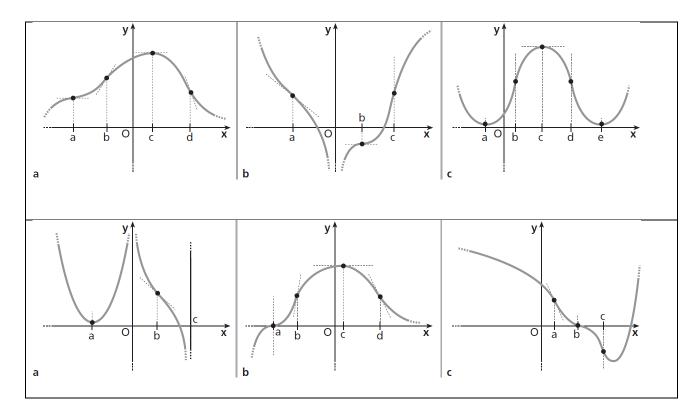
S:
$$\left[a \right] a = 3; b = -1; c = 3; x_0 = -\frac{1}{4}; c) P(\ln 2; 5) \right]$$

PROPRIETA' DI MONOTONIA

Indica i punti di massimo e di minimo, relativi e assoluti, nelle seguenti funzioni.



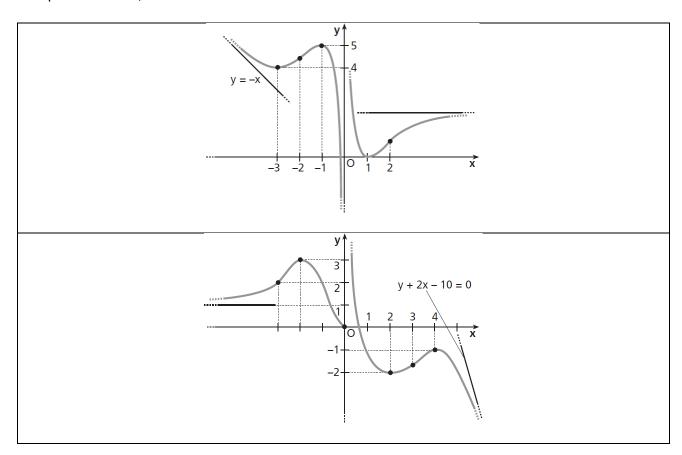
Nei seguenti grafici indica i punti di flesso, specificando se sono orizzontali, verticali o obliqui e se sono ascendenti o discendenti.



Studio delle funzioni

Dal grafico in figura deduci:

- 1. il dominio della funzione;
- 2. le intersezioni con gli assi;
- 3. gli intervalli in cui la funzione è positiva e quelli in cui è negativa;
- 4. i limiti agli estremi del dominio e le equazioni degli asintoti;
- 5. gli intervalli in cui la funzione è crescente e quelli in cui è decrescente;
- 6. i punti di massimo e di minimo relativi;
- 7. i punti di flesso, evidenziando le concavità.



Studia e rappresenta graficamente le seguenti funzioni.

1	$y = x^3 - 3x^2$	$[\max(0;0); \min(2;-4); F(1;-2)]$
2	$y = x^3 + 3x^2$	$[\max(-2;4);\min(0;0);F(-1;2)]$
3	$y = x^4 - 2x^2 - 3$	$\left[\text{funzione pari; min } (\pm 1;-4); \max (0;-3); F\left(\pm \frac{1}{\sqrt{3}}; -\frac{32}{9}\right)\right]$
4	$y = x^4 - 2x^2 - 8$	$\left[\text{funzione pari; min } (\pm 1;-9); \max (0;-8); F\left(\pm \frac{1}{\sqrt{3}}; -\frac{77}{9}\right)\right]$
5	$y = \frac{x^3}{x+1}$	$a: x = -1; \min\left(-\frac{3}{2}; \frac{27}{4}\right); F(0;0)$

6	$y = \frac{x^3}{x - 1}$	$a: x=1; \min\left(\frac{3}{2}; \frac{27}{4}\right); F(0;0)$
7	$y = \frac{x^3}{x^2 - 4}$	[funz. dispari; $a: x = \pm 2$, $y = x$; min $\left(-2\sqrt{3}; -3\sqrt{3}\right)$; max $\left(2\sqrt{3}; 3\sqrt{3}\right)$; $F\left(0; 0\right)$]
8	$y = \frac{x^3}{x^2 - 9}$	$\left[\text{funz. dispari; } a: x = \pm 3, \ y = x; \min\left(-3\sqrt{3}; -\frac{9\sqrt{3}}{2}\right); \max\left(3\sqrt{3}; \frac{9\sqrt{3}}{2}\right); F\left(0; 0\right)\right]$
9	$y = -2 + \sqrt{5 + 4x - x^2}$	$[\max (2;1); x = -1, x = 5 \text{ punti a tangente verticale}]$
10	$y = -1 + \sqrt{7 - 6x - x^2}$	$[\max(-3;3); x = -7, x = 1 \text{ punti a tangente verticale}]$
11	$y = \sqrt{\frac{2-x}{x+4}}$	$\left[a: x = -4; F\left(\frac{1}{2}; \frac{\sqrt{3}}{3}\right)\right]$
12	$y = \sqrt{\frac{1-x}{x+5}}$	$\left[a: x = -5; F\left(-\frac{1}{2}; \frac{\sqrt{3}}{3}\right)\right]$
13	$y = \frac{x^2 - 1}{e^x}$	$a: y = 0; \min\left(1 - \sqrt{2}; \frac{2 - 2\sqrt{2}}{e^{1 - \sqrt{2}}}\right); \max\left(1 + \sqrt{2}; \frac{2 + 2\sqrt{2}}{e^{1 + \sqrt{2}}}\right);$
		$F_{1}\left(2-\sqrt{3};\frac{6-4\sqrt{3}}{e^{2-\sqrt{3}}}\right); F_{2}\left(2+\sqrt{3};\frac{6+4\sqrt{3}}{e^{2+\sqrt{3}}}\right)$
14	$y = \frac{1 - x^2}{e^x}$	$a: y = 0; \min\left(1 + \sqrt{2}; -\frac{2 + 2\sqrt{2}}{e^{1 + \sqrt{2}}}\right); \max\left(\sqrt{2} - 1; \frac{-2 + 2\sqrt{2}}{e^{1 - \sqrt{2}}}\right);$
		$F_{1}\left(2-\sqrt{3};-\frac{6-4\sqrt{3}}{e^{2-\sqrt{3}}}\right);F_{2}\left(2+\sqrt{3};-\frac{6+4\sqrt{3}}{e^{2+\sqrt{3}}}\right)$
15	$y = \frac{\ln\left(x+1\right)}{\left(x+1\right)^2}$	$\left[a: x = -1; \max\left(\sqrt{e} - 1; \frac{1}{2e}\right); F\left(e^{\frac{5}{6}} - 1; \frac{5}{6e^{\frac{5}{3}}}\right)\right]$
16	$y = \frac{\ln(x-1)}{(x-1)^2}$	$a: x = 1; \max\left(\sqrt{e} + 1; \frac{1}{2e}\right); F\left(e^{\frac{5}{6}} + 1; \frac{5}{6e^{\frac{5}{3}}}\right)$
17	$y = \frac{\sin x}{\cos x + 2}$	$\left[\min\left(\frac{4}{3}\pi; -\frac{\sqrt{3}}{3}\right); \max\left(\frac{2}{3}\pi; \frac{\sqrt{3}}{3}\right); F_0(0;0); F_1(\pi;0); F_2(2\pi;0)\right]$
18	$y = \frac{\cos x}{\sin x + 2}$	$\left[\min\left(\frac{7}{6}\pi; -\frac{\sqrt{3}}{3}\right); \max\left(\frac{11}{6}\pi; \frac{\sqrt{3}}{3}\right); F_0\left(\frac{\pi}{2}; 0\right); F_1\left(3\frac{\pi}{2}; 0\right)\right]$
19	$y = \left \frac{x^2 - 2x - 8}{x - 2} \right $	$\begin{bmatrix} a: x = 2; \ y = x; \ y = -x; \min_{1}(-2;0) \\ \text{punto angoloso; } \min_{2}(4;0) \text{ punto angoloso} \end{bmatrix}$
20	$y = \left \frac{x^2 + 2x - 3}{x + 1} \right $	$\begin{bmatrix} a: x = -1; \ y = x + 1; \ y = -x - 1; \ \min_{1}(-3;0) \\ \text{punto angoloso}; \ \min_{2}(1;0) \ \text{punto angoloso} \end{bmatrix}$

Paulo difficiliora

21	$9x^2 - 4$
	$y = \frac{1}{9x^2 - 16}$

22	$y = e^x - \frac{1}{8}e^{2x}$
23	y = log 3 - 2logx
24	$y = \log \frac{\log x + 1}{\log x - \frac{1}{2}}$
25	$y = artg \frac{x+2}{3-x}$
26	$y = e^x(3x^2 - 4x - 1)$
27	$y = \frac{x^2}{16} \left(4\log^2\left(\frac{x}{4}\right) - 10\log\left(\frac{x}{4}\right) + 5 \right)$
28	$y = \log(5x^2 + 4x + 4)$
29	$y = \sqrt{ x^2 - 4x - 5 }$
30	$y = x - 2 \cdot e^x$
31	y = x logx
32	$y = \frac{\sin x}{\sqrt{2}\cos x - 1}$
33	$y = \sqrt{2sin^2x - 1}$
34	$y = \sqrt{\frac{x^2(x-1)}{x+1}}$
35	$y = \sqrt{ 5x^2 - 6x + 1 }$
36	$y = \sqrt[3]{\frac{x+3}{x^2 - 3x - 4}}$ $y = \log(2x^2 + 3x + 1)$
37	
38	$y = \log \frac{ 2x+1 - x^2}{3x - 1}$
39	$y = \frac{x}{x+1}e^{\frac{x}{2x-1}}$
40	$y = e^{\frac{2-x^2}{1-x^2}}$
41	$y = e^{2x - x^2 + x - 2 }$
-	

42	$y = \log_{\frac{1}{3}}(x^2 - 9) - \log_{\frac{1}{3}}(x^2 + 5x + 4)$
43	$y = \frac{1}{\sqrt{e^x(1-x^2)}}$
44	$y = artg\left(\frac{2^x}{2^x - 1}\right)$
45	$y = \frac{x logx }{(logx - 1)^2}$
46	$y = artg\left(\frac{1-3x}{2-x}\right)$
47	$y = arcsin\left(\frac{2-x}{3-2x}\right)$
48	$y = 2^{x + \frac{1}{x}}$
49	$y = \sqrt{x}e^{x-1}$
50	$y = \sqrt[5]{x}e^{-\frac{1}{x}}$